

The Izze-Racing infrared sensor is specifically designed to measure the highly transient surface temperature of a tire with spatial fidelity, providing invaluable information for chassis tuning, tire exploitation, and driver development.

Each sensor is capable of measuring temperature at 16, 8, or 4 laterally-spaced points, at a sampling frequency of up to 100Hz, object temperature between -20 to 300°C, using CAN 2.0A protocol, enclosed in a compact IP66 rated aluminum enclosure, and priced to be affordable to all tiers of motorsport.

The sensor is now offered as a complete kit for any data acquisition system that can log CAN messages. The kit includes four 4, 8, or 16-channel infrared tire temperature sensors with wide (60°) or ultra-wide (120°) field-of-views and a complete motorsport-grade wiring harness.

SENSOR SPECIFICATIONS

Temperature Measurement Range, To	-20 to 300°C		
Package Temperature Range, T _p	-20 to 85 °C		
Accuracy (Central 10 Channels, Nominal)	± 1.0 °C $T_{sensor} < 50$ °C		
(16-Ch Sensor)	±2.0°C T _{sensor} > 50°C		
Accuracy (First & Last 3 Channels, Nominal)	±2.0°C T _{sensor} < 50°C		
(16-Ch Sensor)	±3.0°C T _{sensor} > 50°C		
Noise Equivalent Temperature Difference, NETD	0.5 °C 16Hz, ε = 0.85, T _o = 25 °C		
Field of View, FOV	60°x 8° (IRTS-60-V2)		
rieid of view, rov	120°x 14° (IRTS-120-V2)		
Number of Channels	16, 8, or 4		
Sampling Frequency	100, 64, 32, 16, 8, 4, 2, or 1Hz		
Thermal Time Constant	2 ms		
Effective Emissivity	0.01 to 1.00 (default = 0.85)		
Spectral Range	8 to 14 μm		

ELECTRICAL SPECIFICATIONS (SENSOR)

Supply Voltage, V _s	5 to 8 V
Supply Current, I _s (typ)	30 mA
Features	 Reverse polarity protection
	 Over-temperature protection (125°C)

MECHANICAL SPECIFICATIONS

Weight	< 18.0 g
L x W x H (max, 60° FOV)	37.6 x 26.0 x 12.3 mm
L x W x H (max, 120° FOV)	32 x 29.0 x 12.3 mm
Protection Rating	IP66

CAN SPECIFICATIONS

Standard CAN 2.0A (11-bit identifier), ISO-11898 Bit Rate 1 Mbit/s Byte Order Big-Endian / Motorola Data Conversion 0.1 °C per bit, -100 °C offset, unsigned LF Sensor: 1200 (Dec) / 0x4B0 (Hex) Base CAN ID's RF Sensor: 1204 (Dec) / 0x4B4 (Hex) (Default) LR Sensor: 1208 (Dec) / 0x4B8 (Hex) RR Sensor: 1212 (Dec) / 0x4BC (Hex) Termination None

CAN ID: Base ID

Channel 1 Channel 2			Channel 3		Channel 4		
Byte 0 (MSB)	Byte 1 (LSB)	Byte 2 (MSB)	Byte 3 (LSB)	Byte 4 (MSB)	Byte 5 (LSB)	Byte 6 (MSB)	Byte 7 (LSB)

CAN ID: Base ID+1

Channel 5 Channel 6		Channel 7		Channel 8			
Byte 0 (MSB)	Byte 1 (LSB)	Byte 2 (MSB)	Byte 3 (LSB)	Byte 4 (MSB)	Byte 5 (LSB)	Byte 6 (MSB)	Byte 7 (LSB)

CAN ID: Base ID+2

Channel 9		Channel 10		Channel 11		Channel 12	
Byte 0 (MSB)	Byte 1 (LSB)	Byte 2 (MSB)	Byte 3 (LSB)	Byte 4 (MSB)	Byte 5 (LSB)	Byte 6 (MSB)	Byte 7 (LSB)

CAN ID: Base ID+3

Channel 14 Channel 14		Channel 15		Channel 16			
Byte 0 (MSB)	Byte 1 (LSB)	Byte 2 (MSB)	Byte 3 (LSB)	Byte 4 (MSB)	Byte 5 (LSB)	Byte 6 (MSB)	Byte 7 (LSB)

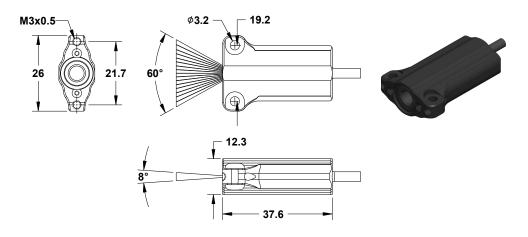
WIRING SPECIFICATIONS (SENSOR)

Wire 26 AWG M22759/32, DR25 jacket
Cable Length (typ.) 500 mm
Connector Deutsch DTM 4P (gold contacts)

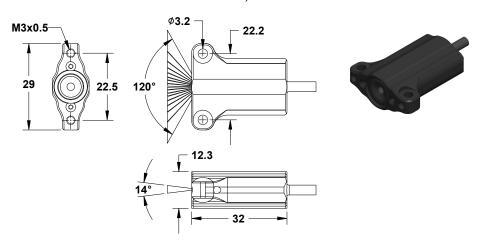
Supply Voltage, V_s Red Ground Black CAN + Blue

SENSOR CONFIGURATION:

To modify the sensor's configuration, send the following CAN message at 1Hz for at least 10 seconds and then reset the sensor by cycling power:

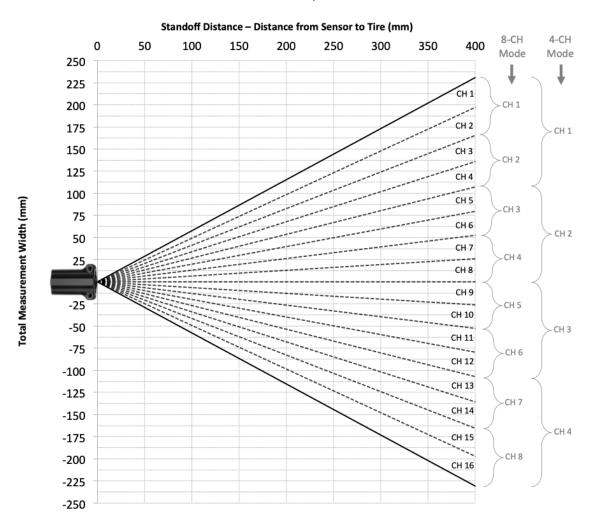

CAN ID: Current Base ID

Programmin	g Constant	New CAN Bas	se ID (11-bit)	Emissivity	Sampling	Frequency	Channels	Bite Rate
Byte 0 (MSB)	Byte 1 (LSB)	Byte 2 (MSB)	Byte 3 (LSB)	Byte 4	Byte 5		Byte 6	Byte 7
30000 = 0x75	530	1 = 0x001 : : 2047 = 0x7FF	:	1 = 0.01 : 100 = 1.00	1 = 1Hz 2 = 2Hz 3 = 4Hz 4 = 8Hz	5 = 16Hz 6 = 32Hz 7 = 64Hz 8 = 100Hz	40 = 4 Ch 80 = 8 Ch 160 = 16 Ch	1 = 1 Mbit/s 2 = 500 kbit/s 3 = 250 kbit/s 4 = 100 kbit/s

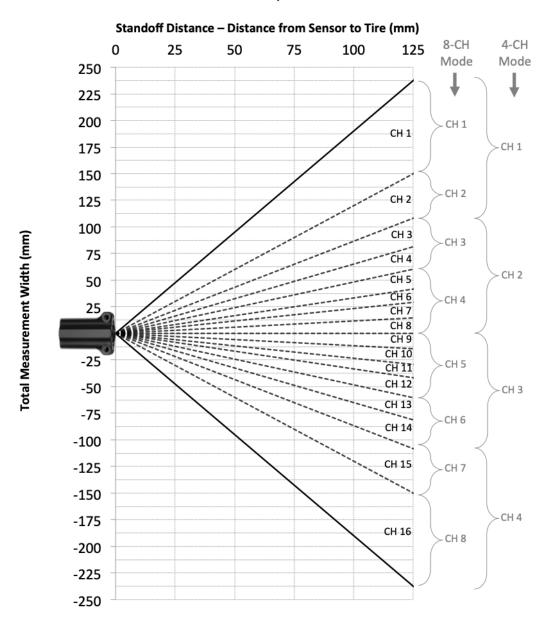

CAN messages should only be sent to the sensor during the configuration sequence. DO NOT continuously send CAN messages with the same Base CAN ID to the sensor.

DIMENSIONS:

60° Field-of-View, IRTS-60-V3



120° Field-of-View, IRTS-120-V3


60° Field-of-View, IRTS-60-V3:

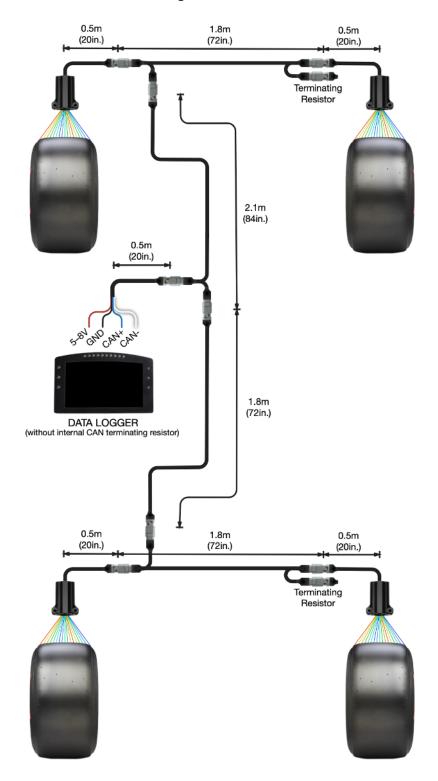
(Angle offset, z-axis rotation, between -5 $^{\circ}$ and +5 $^{\circ}$, mounts should allow adjustment accordingly)

120° Field-of-View, IRTS-120-V3:

(Angle offset, z-axis rotation, between -5° and +5°, mounts should allow adjustment accordingly)

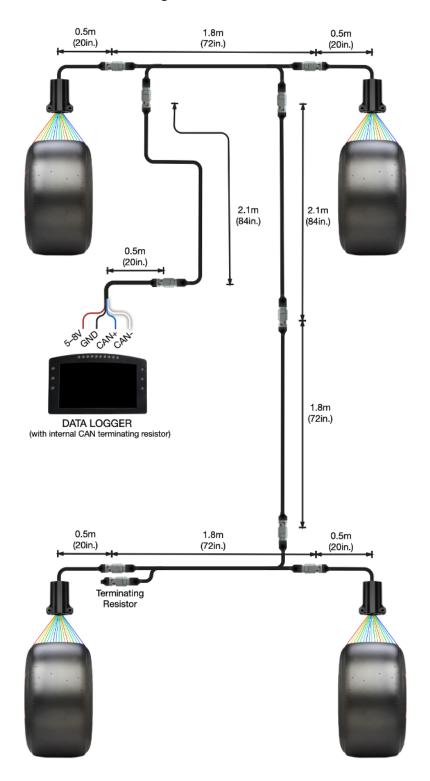
WIRING SPECIFICATIONS (HARNESS):

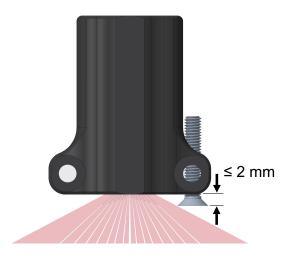
Wire	22 AWG M22759/32, DR25 jacket, ATUM boots
Cable Length (typ.)	1.8-2.1m trunk segments, 0.5m branches
Connectors	Deutsch DTM 4P (gold contacts)


Supply Voltage, V _s	Red	(Pin 3)	(twisted)
Ground	Black	(Pin 4)	(twisteu)
CAN +	Blue	(Pin 2)	(twisted)
CAN -	White		(twisteu)

- The default wiring harness layout is shown in the first diagram below and is designed for data loggers <u>without</u> an internal CAN terminating resistor (MoTeC, Cosworth, Bosch, Stack, 2D, AEM, RaceCapture/Pro systems).
 - The harness can be modified upon request for data loggers with an internal CAN terminating resistor (AiM systems). The layout of this harness is shown in the second diagram below.
- The harness needs to be powered with 5-8 volts (120mA) but may be extended to 6.5-36 volts upon request.
- The CAN terminating resistors are integrated into the short Deutsch DTM connectors. Resistor value is 120Ω .
- Female pins for MoTeC Tyco/AMP Superseal connectors or female pins (38943-22) for AS Deutsch Autosport connectors (e.g., AS620-35SN connector for C185, C187, L180, ADL/EDL) may be added to the flying leads for the data logger upon request.
- Additional CAN sensors (strain gauge amplifiers, brake temperature sensors, etc.) may be added to the harness by using a y-harness at each corner.
- Harness lengths may be modified upon request. Please contact us if you would like to modify the wiring harness / kit; we are glad to accommodate your specific requirements.

DEFAULT WIRING HARNESS LAYOUT:

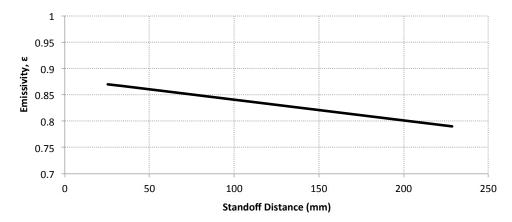

(Data logger without internal CAN terminating resistor)


ALTERNATIVE WIRING HARNESS LAYOUT:

(Data Logger with internal CAN terminating resistor)

FRONT FACE MOUNTING, IRTS-120-V3:

- With the IRTS-120-V3, care has to be taken when mounting from the front face holes given the wide width (120°) of the infrared temperature channels. If the mounting bolt standoff from the front face is greater than 3mm, then it will partially block temperature channels 1 and 16.
- It's recommended to use M3 x 0.5 flat head bolts with a 90° countersunk hole to keep bolt-to-face standoff distances < 3mm.
- If this cannot be prevented, ignore temperature readings from CH1 and CH16.


GERMANIUM PROTECTIVE WINDOW, IRTS-GE-V1:

- A Germanium protective window is available for applications subjected to impinging debris (e.g., sensor placed behind tire).
- The widow is specifically designed for the IRTS sensor to achieve superior accuracy with minimal IR signal attenuation.
 - The effective emissivity is lowered by 10% with the widow installed
 - Default emissivity, window installed = 0.75 (IRTS-120-V3), 0.68 (IRTS-60-V3)
- The window mounts with two #00 Philips screws.
 - (i) Screws require blue thread locker
 - Lightly torque screws, excessive torque could crack window

ADDITIONAL INFORMATION:

- Stated accuracy is under isothermal package conditions; for utmost accuracy, avoid abrupt temperature transients and gradients across the sensor's package.
- Point the sensor in the downstream direction (facing front of tire) to avoid contamination, pitting, and/or destruction of the sensor's lens from debris. Germanium protective windows are available as an optional extra for protection and upstream facing applications.
- The *effective* emissivity of most tires ranges from approximately 0.75 to 0.90 in the 8 to 14 μm spectrum.
 - Generally, the emissivity should be lowered as the standoff distance (distance from tire to sensor) increases; this is particularly important with the 60° FOV sensor due to the larger standoff distances required. The suggested emissivity vs. standoff distance is shown in the graph below:

- o Lowering the emissivity increases the measured object temperature and vice versa
- Noise Equivalent Temperature Difference (NETD) increases with increasing sampling frequency:
 - Provided that tire surface temperature is highly transient, it is usually advantageous to use a higher sampling frequency at the cost of increased noise. A sampling frequency of 16 or 32 Hz is recommended for most applications.

